LCOV - code coverage report
Current view: top level - src/common/autoware_auto_geometry/include/geometry - common_2d.hpp (source / functions) Hit Total Coverage
Test: lcov.total.filtered Lines: 77 80 96.2 %
Date: 2021-01-26 05:02:50 Functions: 37 37 100.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 13 58 22.4 %

           Branch data     Line data    Source code
       1                 :            : // Copyright 2017-2019 the Autoware Foundation
       2                 :            : //
       3                 :            : // Licensed under the Apache License, Version 2.0 (the "License");
       4                 :            : // you may not use this file except in compliance with the License.
       5                 :            : // You may obtain a copy of the License at
       6                 :            : //
       7                 :            : //     http://www.apache.org/licenses/LICENSE-2.0
       8                 :            : //
       9                 :            : // Unless required by applicable law or agreed to in writing, software
      10                 :            : // distributed under the License is distributed on an "AS IS" BASIS,
      11                 :            : // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      12                 :            : // See the License for the specific language governing permissions and
      13                 :            : // limitations under the License.
      14                 :            : //
      15                 :            : // Co-developed by Tier IV, Inc. and Apex.AI, Inc.
      16                 :            : /// \file
      17                 :            : /// \brief This file includes common functionality for 2D geometry, such as dot products
      18                 :            : 
      19                 :            : #ifndef GEOMETRY__COMMON_2D_HPP_
      20                 :            : #define GEOMETRY__COMMON_2D_HPP_
      21                 :            : 
      22                 :            : #include <common/types.hpp>
      23                 :            : #include <cmath>
      24                 :            : #include <limits>
      25                 :            : #include <stdexcept>
      26                 :            : 
      27                 :            : #include "geometry/interval.hpp"
      28                 :            : 
      29                 :            : using autoware::common::types::float32_t;
      30                 :            : using autoware::common::types::bool8_t;
      31                 :            : 
      32                 :            : namespace autoware
      33                 :            : {
      34                 :            : namespace common
      35                 :            : {
      36                 :            : namespace geometry
      37                 :            : {
      38                 :            : 
      39                 :            : /// \brief Temporary namespace for point adapter methods, for use with nonstandard point types
      40                 :            : namespace point_adapter
      41                 :            : {
      42                 :            : /// \brief Gets the x value for a point
      43                 :            : /// \return The x value of the point
      44                 :            : /// \param[in] pt The point
      45                 :            : /// \tparam PointT The point type
      46                 :            : template<typename PointT>
      47                 :     259203 : inline auto x_(const PointT & pt)
      48                 :            : {
      49                 :     259203 :   return pt.x;
      50                 :            : }
      51                 :            : /// \brief Gets the y value for a point
      52                 :            : /// \return The y value of the point
      53                 :            : /// \param[in] pt The point
      54                 :            : /// \tparam PointT The point type
      55                 :            : template<typename PointT>
      56                 :     191991 : inline auto y_(const PointT & pt)
      57                 :            : {
      58                 :     191991 :   return pt.y;
      59                 :            : }
      60                 :            : /// \brief Gets the z value for a point
      61                 :            : /// \return The z value of the point
      62                 :            : /// \param[in] pt The point
      63                 :            : /// \tparam PointT The point type
      64                 :            : template<typename PointT>
      65                 :        343 : inline auto z_(const PointT & pt)
      66                 :            : {
      67                 :        343 :   return pt.z;
      68                 :            : }
      69                 :            : /// \brief Gets a reference to the x value for a point
      70                 :            : /// \return A reference to the x value of the point
      71                 :            : /// \param[in] pt The point
      72                 :            : /// \tparam PointT The point type
      73                 :            : template<typename PointT>
      74                 :      49934 : inline auto & xr_(PointT & pt)
      75                 :            : {
      76                 :      49934 :   return pt.x;
      77                 :            : }
      78                 :            : /// \brief Gets a reference to the y value for a point
      79                 :            : /// \return A reference to The y value of the point
      80                 :            : /// \param[in] pt The point
      81                 :            : /// \tparam PointT The point type
      82                 :            : template<typename PointT>
      83                 :      49934 : inline auto & yr_(PointT & pt)
      84                 :            : {
      85                 :      49934 :   return pt.y;
      86                 :            : }
      87                 :            : /// \brief Gets a reference to the z value for a point
      88                 :            : /// \return A reference to the z value of the point
      89                 :            : /// \param[in] pt The point
      90                 :            : /// \tparam PointT The point type
      91                 :            : template<typename PointT>
      92                 :            : inline auto & zr_(PointT & pt)
      93                 :            : {
      94                 :            :   return pt.z;
      95                 :            : }
      96                 :            : }  // namespace point_adapter
      97                 :            : 
      98                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
      99                 :            : /// \brief compute whether line segment rp is counter clockwise relative to line segment qp
     100                 :            : /// \param[in] pt shared point for both line segments
     101                 :            : /// \param[in] r point to check if it forms a ccw angle
     102                 :            : /// \param[in] q reference point
     103                 :            : /// \return whether angle formed is ccw. Three collinear points is considered ccw
     104                 :            : template<typename T>
     105                 :       4831 : inline bool8_t ccw(const T & pt, const T & q, const T & r)
     106                 :            : {
     107                 :            :   using point_adapter::x_;
     108                 :            :   using point_adapter::y_;
     109   [ #  #  #  #  :       4831 :   return (((x_(q) - x_(pt)) * (y_(r) - y_(pt))) - ((y_(q) - y_(pt)) * (x_(r) - x_(pt)))) <= 0.0F;
             #  #  #  # ]
     110                 :            : }
     111                 :            : 
     112                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     113                 :            : /// \brief compute p x q = p1 * q2 - p2 * q1
     114                 :            : /// \param[in] pt first point
     115                 :            : /// \param[in] q second point
     116                 :            : /// \return 2d cross product
     117                 :            : template<typename T>
     118                 :      22248 : inline float32_t cross_2d(const T & pt, const T & q)
     119                 :            : {
     120                 :            :   using point_adapter::x_;
     121                 :            :   using point_adapter::y_;
     122   [ #  #  #  # ]:      22248 :   return (x_(pt) * y_(q)) - (y_(pt) * x_(q));
     123                 :            : }
     124                 :            : 
     125                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     126                 :            : /// \brief compute p * q = p1 * q1 + p2 * q2
     127                 :            : /// \param[in] pt first point
     128                 :            : /// \param[in] q second point
     129                 :            : /// \return 2d scalar dot product
     130                 :            : template<typename T>
     131                 :      28782 : inline float32_t dot_2d(const T & pt, const T & q)
     132                 :            : {
     133                 :            :   using point_adapter::x_;
     134                 :            :   using point_adapter::y_;
     135   [ #  #  #  #  :      28782 :   return (x_(pt) * x_(q)) + (y_(pt) * y_(q));
          #  #  #  #  #  
          #  #  #  #  #  
                   #  # ]
     136                 :            : }
     137                 :            : 
     138                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     139                 :            : /// \brief Compute the 2d difference between two points, p - q
     140                 :            : /// \param[in] p The left hand side
     141                 :            : /// \param[in] q The right hand side
     142                 :            : /// \return A point with the difference in the x and y fields, all other fields are default
     143                 :            : ///         initialized
     144                 :            : template<typename T>
     145                 :      11470 : T minus_2d(const T & p, const T & q)
     146                 :            : {
     147                 :      11470 :   T r;
     148                 :            :   using point_adapter::x_;
     149                 :            :   using point_adapter::y_;
     150                 :      22508 :   point_adapter::xr_(r) = x_(p) - x_(q);
     151                 :      11470 :   point_adapter::yr_(r) = y_(p) - y_(q);
     152                 :      11470 :   return r;
     153                 :            : }
     154                 :            : 
     155                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     156                 :            : /// \brief The unary minus or negation operator applied to a single point's 2d fields
     157                 :            : /// \param[in] p The left hand side
     158                 :            : /// \return A point with the negation in the x and y fields, all other fields are default
     159                 :            : ///         initialized
     160                 :            : template<typename T>
     161                 :        108 : T minus_2d(const T & p)
     162                 :            : {
     163                 :        108 :   T r;
     164                 :        108 :   point_adapter::xr_(r) = -point_adapter::x_(p);
     165                 :        108 :   point_adapter::yr_(r) = -point_adapter::y_(p);
     166                 :        108 :   return r;
     167                 :            : }
     168                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     169                 :            : /// \brief The 2d addition operation, p + q
     170                 :            : /// \param[in] p The left hand side
     171                 :            : /// \param[in] q The right hand side
     172                 :            : /// \return A point with the sum in the x and y fields, all other fields are default
     173                 :            : ///         initialized
     174                 :            : template<typename T>
     175                 :       8948 : T plus_2d(const T & p, const T & q)
     176                 :            : {
     177                 :       8948 :   T r;
     178                 :            :   using point_adapter::x_;
     179                 :            :   using point_adapter::y_;
     180                 :       9659 :   point_adapter::xr_(r) = x_(p) + x_(q);
     181                 :       9659 :   point_adapter::yr_(r) = y_(p) + y_(q);
     182                 :       8948 :   return r;
     183                 :            : }
     184                 :            : 
     185                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     186                 :            : /// \brief The scalar multiplication operation, p * a
     187                 :            : /// \param[in] p The point value
     188                 :            : /// \param[in] a The scalar value
     189                 :            : /// \return A point with the scaled x and y fields, all other fields are default
     190                 :            : ///         initialized
     191                 :            : template<typename T>
     192                 :       8960 : T times_2d(const T & p, const float32_t a)
     193                 :            : {
     194                 :       8960 :   T r;
     195                 :       9671 :   point_adapter::xr_(r) = point_adapter::x_(p) * a;
     196                 :       8960 :   point_adapter::yr_(r) = point_adapter::y_(p) * a;
     197                 :       8960 :   return r;
     198                 :            : }
     199                 :            : 
     200                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     201                 :            : /// \brief solve p + t * u = q + s * v
     202                 :            : ///        Ref: https://stackoverflow.com/questions/563198/
     203                 :            : ///             whats-the-most-efficent-way-to-calculate-where-two-line-segments-intersect
     204                 :            : /// \param[in] pt anchor point of first line
     205                 :            : /// \param[in] u direction of first line
     206                 :            : /// \param[in] q anchor point of second line
     207                 :            : /// \param[in] v direction of second line
     208                 :            : /// \return intersection point
     209                 :            : /// \throw std::runtime_error if lines are (nearly) collinear or parallel
     210                 :            : template<typename T>
     211                 :       8936 : inline T intersection_2d(const T & pt, const T & u, const T & q, const T & v)
     212                 :            : {
     213                 :       8936 :   const float32_t num = cross_2d(minus_2d(pt, q), u);
     214                 :       8936 :   float32_t den = cross_2d(v, u);
     215                 :       8936 :   constexpr auto FEPS = std::numeric_limits<float32_t>::epsilon();
     216         [ -  + ]:       8936 :   if (fabsf(den) < FEPS) {
     217         [ #  # ]:          0 :     if (fabsf(num) < FEPS) {
     218                 :            :       // collinear case, anything is ok
     219                 :          0 :       den = 1.0F;
     220                 :            :     } else {
     221                 :            :       // parallel case, no valid output
     222                 :            :       throw std::runtime_error(
     223         [ #  # ]:          0 :               "intersection_2d: no unique solution (either collinear or parallel)");
     224                 :            :     }
     225                 :            :   }
     226                 :       8936 :   return plus_2d(q, times_2d(v, num / den));
     227                 :            : }
     228                 :            : 
     229                 :            : 
     230                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     231                 :            : /// \brief rotate point given precomputed sin and cos
     232                 :            : /// \param[inout] pt point to rotate
     233                 :            : /// \param[in] cos_th precomputed cosine value
     234                 :            : /// \param[in] sin_th precompined sine value
     235                 :            : template<typename T>
     236                 :       8720 : inline void rotate_2d(T & pt, const float32_t cos_th, const float32_t sin_th)
     237                 :            : {
     238                 :       8720 :   const float32_t x = point_adapter::x_(pt);
     239                 :       8720 :   const float32_t y = point_adapter::y_(pt);
     240                 :       8720 :   point_adapter::xr_(pt) = (cos_th * x) - (sin_th * y);
     241                 :       8720 :   point_adapter::yr_(pt) = (sin_th * x) + (cos_th * y);
     242                 :       8720 : }
     243                 :            : 
     244                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     245                 :            : /// \brief rotate by radian angle th in z direction with ccw positive
     246                 :            : /// \param[in] pt reference point to rotate
     247                 :            : /// \param[in] th_rad angle by which to rotate point
     248                 :            : /// \return rotated point
     249                 :            : template<typename T>
     250                 :            : inline T rotate_2d(const T & pt, const float32_t th_rad)
     251                 :            : {
     252                 :            :   T q(pt);  // It's reasonable to expect a copy constructor
     253                 :            :   const float32_t s = sinf(th_rad);
     254                 :            :   const float32_t c = cosf(th_rad);
     255                 :            :   rotate_2d(q, c, s);
     256                 :            :   return q;
     257                 :            : }
     258                 :            : 
     259                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     260                 :            : /// \brief compute q s.t. p T q, or p * q = 0
     261                 :            : ///        This is the equivalent of a 90 degree ccw rotation
     262                 :            : /// \param[in] pt point to get normal point of
     263                 :            : /// \return point normal to p (unnormalized)
     264                 :            : template<typename T>
     265                 :         50 : inline T get_normal(const T & pt)
     266                 :            : {
     267                 :         50 :   T q(pt);
     268                 :         50 :   point_adapter::xr_(q) = -point_adapter::y_(pt);
     269                 :         50 :   point_adapter::yr_(q) = point_adapter::x_(pt);
     270                 :         50 :   return q;
     271                 :            : }
     272                 :            : 
     273                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     274                 :            : /// \brief get magnitude of x and y components:
     275                 :            : /// \param[in] pt point to get magnitude of
     276                 :            : /// \return magitude of x and y components together
     277                 :            : template<typename T>
     278                 :      17548 : inline float32_t norm_2d(const T & pt)
     279                 :            : {
     280   [ -  -  -  -  :      23083 :   return sqrtf(dot_2d(pt, pt));
          -  -  -  -  +  
                +  +  + ]
     281                 :            : }
     282                 :            : 
     283                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     284                 :            : /// \brief Compute the closest point on line segment p-q to point r
     285                 :            : ///        Based on equations from https://stackoverflow.com/a/1501725 and
     286                 :            : ///        http://paulbourke.net/geometry/pointlineplane/
     287                 :            : /// \param[in] p First point defining the line segment
     288                 :            : /// \param[in] q Second point defining the line segment
     289                 :            : /// \param[in] r Reference point to find the closest point to
     290                 :            : /// \return Closest point on line segment p-q to point r
     291                 :            : template<typename T>
     292                 :         12 : inline T closest_segment_point_2d(const T & p, const T & q, const T & r)
     293                 :            : {
     294                 :         12 :   const T qp = minus_2d(q, p);
     295                 :         12 :   const float32_t len2 = dot_2d(qp, qp);
     296                 :         12 :   T ret = p;
     297         [ +  + ]:         12 :   if (len2 > std::numeric_limits<float32_t>::epsilon()) {
     298         [ +  - ]:          8 :     const Interval_f unit_interval(0.0f, 1.0f);
     299                 :          8 :     const float32_t val = dot_2d(minus_2d(r, p), qp) / len2;
     300         [ +  - ]:          8 :     const float32_t t = Interval_f::clamp_to(unit_interval, val);
     301                 :          8 :     ret = plus_2d(p, times_2d(qp, t));
     302                 :            :   }
     303                 :         18 :   return ret;
     304                 :            : }
     305                 :            : //
     306                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     307                 :            : /// \brief Compute the closest point on the line going through p-q to point r
     308                 :            : //         Obtained by simplifying closest_segment_point_2d.
     309                 :            : /// \param[in] p First point defining the line
     310                 :            : /// \param[in] q Second point defining the line
     311                 :            : /// \param[in] r Reference point to find the closest point to
     312                 :            : /// \return Closest point on line p-q to point r
     313                 :            : /// \throw std::runtime_error if the two points coincide and hence don't uniquely
     314                 :            : //         define a line
     315                 :            : template<typename T>
     316                 :          6 : inline T closest_line_point_2d(const T & p, const T & q, const T & r)
     317                 :            : {
     318                 :          6 :   const T qp = minus_2d(q, p);
     319                 :          6 :   const float32_t len2 = dot_2d(qp, qp);
     320                 :          6 :   T ret = p;
     321         [ +  + ]:          6 :   if (len2 > std::numeric_limits<float32_t>::epsilon()) {
     322                 :          4 :     const float32_t t = dot_2d(minus_2d(r, p), qp) / len2;
     323                 :          4 :     ret = plus_2d(p, times_2d(qp, t));
     324                 :            :   } else {
     325                 :            :     throw std::runtime_error(
     326         [ +  - ]:          2 :             "closet_line_point_2d: line ill-defined because given points coincide");
     327                 :            :   }
     328                 :          6 :   return ret;
     329                 :            : }
     330                 :            : 
     331                 :            : /// \tparam T point type. Must have point adapters defined or have float members x and y
     332                 :            : /// \brief Compute the distance from line segment p-q to point r
     333                 :            : /// \param[in] p First point defining the line segment
     334                 :            : /// \param[in] q Second point defining the line segment
     335                 :            : /// \param[in] r Reference point to find the distance from the line segment to
     336                 :            : /// \return Distance from point r to line segment p-q
     337                 :            : template<typename T>
     338                 :          6 : inline float32_t point_line_segment_distance_2d(const T & p, const T & q, const T & r)
     339                 :            : {
     340         [ +  - ]:          6 :   const T pq_r = minus_2d(closest_segment_point_2d(p, q, r), r);
     341                 :         12 :   return norm_2d(pq_r);
     342                 :            : }
     343                 :            : 
     344                 :            : /// \brief Make a 2D unit vector given an angle.
     345                 :            : /// \tparam T Point type. Must have point adapters defined or have float members x and y
     346                 :            : /// \param th Angle in radians
     347                 :            : /// \return Unit vector in the direction of the given angle.
     348                 :            : template<typename T>
     349                 :            : inline T make_unit_vector2d(float th)
     350                 :            : {
     351                 :            :   T r;
     352                 :            :   point_adapter::xr_(r) = std::cos(th);
     353                 :            :   point_adapter::yr_(r) = std::sin(th);
     354                 :            :   return r;
     355                 :            : }
     356                 :            : 
     357                 :            : }  // namespace geometry
     358                 :            : }  // namespace common
     359                 :            : }  // namespace autoware
     360                 :            : 
     361                 :            : #endif  // GEOMETRY__COMMON_2D_HPP_

Generated by: LCOV version 1.14